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High resolution solid-state 13CNMR spectra have been ob-
tained for bacteriochlorophyll (BChl) a in a light-harvesting
(LH) 1 complex utilizing a reconstitution method. The LH 1
complexes were reconstituted with 13C-enriched BChl a and
the apo-LH1 polypeptide from Rhodospirillum rubrum. Meas-
urement of the 2-dimentional 13C–13C dipole correlation NMR
spectra enabled the selective assignment of the 13C resonance
from the BChl a molecules in the reconstituted LH1.

High resolution X-ray crystal structures have been per-
formed for the reaction center (RC)1 and peripheral light-har-
vesting 2 (LH2) complex,2 while light-harvesting 1 (LH1) com-
plex has not been determined to atomic resolution because of its
instability and the difficulty of the high-quality crystals. LH1 of
photosynthetic bacteria generally comprises two small polypep-
tides, �, and �, with a ratio of 1:1, along with two BChl a and
one or two carotenoid molecules per �� pair. The BChl a dimers
in the LH1 complexes from a purple nonsulfur bacterium Rhodo-
spirillum (R.) rubrum absorb at 873 nm (Qy band); theQy band is
red-shifted about 110 nm from that of its monomeric form. To
elucidate the electronic mechanism of the red-shift for BChl a
in vivo has been one of the major topics in recent studies of
LH1 complexes.

The LH1 complex is capable of forming a stable intermedi-
ate species with a Qy absorption at approximately 820 nm (refer-
red to as B820), by dissociation of the LH1 with detergent n-oc-
tyl-D-glucopyranoside (OG).3 The B820 species is considered to
be a structural subunit of the LH1 complex. Recently, high-
resolution solution NMR spectra have been measured for BChl
a dimers in the B820 species.4 The replacement of natural abun-
dant BChl a to 13C-enriched one in the complex enabled the sig-
nificant enhancement of the carbon resonance and 1H–13C corre-
lation signals from BChl a. The achievement for the chemical
shift assignment would open a way to the structural analysis at
atomic level.

Here, we reconstituted highly concentrated B870 species
with a Qy absorption at �870 nm from the B820 species with
13C-enriched BChl a, and selective 13C chemical assignments
from BChl a dimers in the B870 species were performed by high
resolution solid-state NMR instead of solution NMR. The B870
species can be considered to correspond to the native LH1 com-
plex, but the high molecular weight and its instability make it
difficult to analyze the structure at atomic level. The combina-
tion of the solid-state NMR analysis and the reconstitution of
stable B870 species enabled the selective detection of the 13C
resonance from BChl a in the B870 species.

The reconstituted B870 species with 13C-enriched BChl a
was formed at high concentration by incorporation of the recon-

stituted B820 species with 13C-enriched BChl a into liposome.
The B820 species with 13C-BChl a was reconstituted according
to previous report.4 That is, 13C-enriched BChl a in acetone was
added to the lyophilized apo-LH1 (where BChl a and carotenoid
are removed from LH1 with benzene and methanol) containing
OG detergent and phosphate. The BChl a-apo-LH1 solution was
freeze-dried and then dissolved by distilled water (final concen-
tration of OG was 0.9%). We, firstly, tried to dilute the concen-
tration of OG detergent by the addition of a phosphate buffer;
however, the Qy band was only red-shifted to 855 nm and half
of the B820 species remained (data not shown). In order to insert
B820 species into liposome, the reconstituted B820 species solu-
tion was mixed with a liposome solution which is made from
phosphatidylcholine and cholesterol according to Szoka et al.,5

and then the mixture solution was incubated for 1 h. The OG
detergent was removed by the addition of polystyrene beads
(Bio-Beads SM2, Bio-Rad, Richmond, California).6 Figure 1
shows the absorption spectra for the B820-liposome mixture so-
lution. The insertion of B820 species into the liposome induced
the red-shift of Qy to 870 nm, and especially, the addition of the
liposome solution (Phosphatidylcholine: 430mM, cholesterol:
34mM) at the fifteenth volume of the B820 species solution
(apo-LH1: 47mM) resulted in little monomeric form of BChl
a. This implied that B870 species was formed by the incorpora-
tion of B820 species into a liposome, and that the increase of the
concentration of B820 species in a liposome stabilized B870
species because of concentration effect on self-assembly. The
liposome with 13C-BChl a-B870 species was centrifuged, and
the pellet was used for solid-state NMR measurement. The ab-
sorption spectrum of the precipitated B870 species was identical
to that in the suspension solution.

In order to assign the 13C chemical shifts from the 13C-BChl
a-B870 species in liposome, 2-dimensional (2-D) homonuclear
13C–13C dipolar correlation NMR spectra were measured. The
2-D 13C–13C dipolar correlation using the technique of radio fre-

500 600 700 800 900

1.2

1.0

0.8

0.6

0.4

0.2

0.0
300 400

Wavelength/nm

A
bs

or
ba

nc
e

Figure 1. Absorption spectra for the B820-liposome mixture solution.
The volume ratio of added liposome solution to B820 solution was changed
to 1/7 (solid line), 1/10 (dotted line), and 1/15 (dashed line). The concen-
trations of the ap-LH1, phosphatidylcholine, cholesterol were 47mM,
430mM, and 34mM.
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quency-driven dipolar recoupling (RFDR) or proton-driven spin
diffusion (PDSD) has been applied for various chlorophyll solid
aggregates and the assignment for the 13C resonance from chlo-
rophyll has been achieved.7 Figure 2 shows the RFDR dipolar
correlation NMR spectra for the 13C-BChl a-B870 species in lip-
osome. With the short mixing time 4ms, many clear 2-D cross
peaks appeared, revealing transfer of coherence between olefinic
carbons in a macrocycle ring. Further, we measured the 2-D cor-
relation spectra at various mixing times from 2ms to 8ms; the
longer mixing time more easily enabled the transfer of coher-
ence. We also applied the proton-driven spin diffusion (PDSD)
correlation spectra because polarization transfer between ali-
phatic carbons was easier with straightforward spin diffusion
techniques than with RFDR. Table 1 shows the assignment of
13C chemical shifts for BChl a in B870 species inserted in a
liposome. Most of the carbons in a bacteriochlorin ring were
assigned; however, the carbons in the peripheral substituents

attached to ring IV (171-C, 172-C, and 18-C) and phytyl ester
chain could not be assigned probably because of low cross
polarization from proton as a result of higher mobility.

Figure 3 represents a schematic map of �� ¼ �B870 �
�monomer. Significant upfield shifts > 4 ppm were detected for
3-C, 31-C, 121-C, and 19-C. For 31-C, the hydrogen bonding
to the NH group in the side chain of the tryptophan residue
(�: Trpþ 11, �: Trpþ 9) has been observed in LH1 and B820
species by Raman8 and solution NMR studies,4 respectively;
the formation of the hydrogen bond would result in a down-
field-shift for 31-C. The solid-state NMR result might indicate
that some factors causing significant upfield shift have an influ-
ence on the ring I. Elucidating the upfield shifts around ring I
might provide us the reason of the red-shift of Qy absorption
to 870 nm.

In conclusion, we succeeded in assigning the 13C chemical
shift for BChl a in the reconstituted LH1 by measuring 2-D
13C–13C dipolar correlation spectra for the 13C-enriched BChl
a in a natural abundant apo-LH1. The reconstitution method us-
ing liposome was much effective for the preparation of the LH1
with only BChl a 13C-enriched. The assignment of 1H chemical
shift for BChl a in LH1 is in progress by multi dimensional solid-
state NMR techniques.
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Figure 2. Contour plot of the 2-D RFDR 13C–13C dipolar correlation
spectrum for the 13C-BChl a-B870 species in a magnetic field of 9.5 T.
The MAS rotation frequency and the mixing time were 8 kHz and 4ms,
respectively. The numbering in the plot corresponds with Figure 3.

Table 1. Assignments of 13C chemical shifts of the the 13C-BCHl a-B870
species

Position B870solid Position B870solid

31 195.3 (1) P2 119.8 (1)
131 189.4 (0.5) 15 110.5 (0.5)
173 171.8 (0.5) 10 102.1 (0.5)
133 171.5 (0.3) 5 101.7 (0.5)
6 167.0 (0.5) 20 96.6 (0.5)
19 162.7 (1) 132 64.7 (1)
14 160.7 (0.4) P1 61.6 (0.6)
9 159.3 (0.3) 8 55.4 (0.5)
16 152.7 (0.5) 134 53.0 (0.5)
1 148.3 (0.3) 17 50.3 (0.5)
4 148.7 (0.5) 18 48.9 (0.5)
11 149.7 (0.5) 7 47.6 (1)
P3 141.5 (1) 32 31.2 (0.5)

139.8 (1) 81 32.4 (0.5)
2 140.7 (0.5) 71 24.0 (1)
3 132.0 (0.5) 21 12.7 (0.5)
13 130.5 (0.5) 121 8.0 (0.5)
12 126.0 (0.5) 82 12.6 (0.5)

The estimated errors for the solid state shifts are in parenthesis.
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Figure 3. Schematic map showing the 13C chemical shift difference,
�� ¼ �B870 � � monomer. All values were obtained using Table 1. The
13C chemical shifts of monomeric BChl a are collected in acetone.4 The
carbons with the �� > �4:0 ppm are marked with a circle in the map.
Open circles correspond with negative ��. The sizes of the circles reflect
the magnitude of the ��.
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